IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i22p11214-11227.html
   My bibliography  Save this article

Bayesian estimation for first-order autoregressive model with explanatory variables

Author

Listed:
  • Kai Yang
  • Dehui Wang

Abstract

In this article, we develop a Bayesian analysis in autoregressive model with explanatory variables. When σ2 is known, we consider a normal prior and give the Bayesian estimator for the regression coefficients of the model. For the case σ2 is unknown, another Bayesian estimator is given for all unknown parameters under a conjugate prior. Bayesian model selection problem is also being considered under the double-exponential priors. By the convergence of ρ-mixing sequence, the consistency and asymptotic normality of the Bayesian estimators of the regression coefficients are proved. Simulation results indicate that our Bayesian estimators are not strongly dependent on the priors, and are robust.

Suggested Citation

  • Kai Yang & Dehui Wang, 2017. "Bayesian estimation for first-order autoregressive model with explanatory variables," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(22), pages 11214-11227, November.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:22:p:11214-11227
    DOI: 10.1080/03610926.2016.1260736
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2016.1260736
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2016.1260736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jitendra Kumar & Ashok Kumar & Varun Agiwal, 2024. "Bayesian Estimation of Multiple Covariate of Autoregressive (MC-AR) Model," Annals of Data Science, Springer, vol. 11(4), pages 1291-1301, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:22:p:11214-11227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.