IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i22p11194-11203.html
   My bibliography  Save this article

On the existence of maximum likelihood estimates for weighted logistic regression

Author

Listed:
  • Guoping Zeng

Abstract

The problems of existence and uniqueness of maximum likelihood estimates for logistic regression were completely solved by Silvapulle in 1981 and Albert and Anderson in 1984. In this paper, we extend the well-known results by Silvapulle and by Albert and Anderson to weighted logistic regression. We analytically prove the equivalence between the overlap condition used by Albert and Anderson and that used by Silvapulle. We show that the maximum likelihood estimate of weighted logistic regression does not exist if there is a complete separation or a quasicomplete separation of the data points, and exists and is unique if there is an overlap of data points. Our proofs and results for weighted logistic apply to unweighted logistic regression.

Suggested Citation

  • Guoping Zeng, 2017. "On the existence of maximum likelihood estimates for weighted logistic regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(22), pages 11194-11203, November.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:22:p:11194-11203
    DOI: 10.1080/03610926.2016.1260742
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2016.1260742
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2016.1260742?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:22:p:11194-11203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.