IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i22p11060-11076.html
   My bibliography  Save this article

A new count model generated from mixed Poisson transmuted exponential family with an application to health care data

Author

Listed:
  • Deepesh Bhati
  • Pooja Kumawat
  • E. Gómez–Déniz

Abstract

In this article, a new mixed Poisson distribution is introduced. This new distribution is obtained by utilizing mixing process, with Poisson distribution as mixed distribution and Transmuted Exponential as mixing distribution. Distributional properties like unimodality, moments, over-dispersion, infinite divisibility are studied. Three methods viz. Method of moment, Method of moment and proportion, and Maximum-likelihood method are used for parameter estimation. Further, an actuarial application in context of aggregate claim distribution is presented. Finally, to show the applicability and superiority of proposed model, we discuss count data and count regression modeling and compare with some well established models.

Suggested Citation

  • Deepesh Bhati & Pooja Kumawat & E. Gómez–Déniz, 2017. "A new count model generated from mixed Poisson transmuted exponential family with an application to health care data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(22), pages 11060-11076, November.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:22:p:11060-11076
    DOI: 10.1080/03610926.2016.1257712
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2016.1257712
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2016.1257712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emrah Altun, 2021. "A new two-parameter discrete poisson-generalized Lindley distribution with properties and applications to healthcare data sets," Computational Statistics, Springer, vol. 36(4), pages 2841-2861, December.
    2. Radhakumari Maya & Christophe Chesneau & Anuresha Krishna & Muhammed Rasheed Irshad, 2022. "Poisson Extended Exponential Distribution with Associated INAR(1) Process and Applications," Stats, MDPI, vol. 5(3), pages 1-18, August.
    3. Emrah Altun & Naushad Mamode Khan, 2022. "Modelling with the Novel INAR(1)-PTE Process," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1735-1751, September.
    4. Sima Ghazanfari & Ali Firoozzare & Daniela Covino & Flavio Boccia & Nadia Palmieri, 2024. "Exploring Factors Influencing Consumers’ Willingness to Pay Healthy-Labeled Foods at a Premium Price," Sustainability, MDPI, vol. 16(16), pages 1-21, August.
    5. Muhammed Rasheed Irshad & Sreedeviamma Aswathy & Radhakumari Maya & Saralees Nadarajah, 2023. "New One-Parameter Over-Dispersed Discrete Distribution and Its Application to the Nonnegative Integer-Valued Autoregressive Model of Order One," Mathematics, MDPI, vol. 12(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:22:p:11060-11076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.