IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i20p9930-9948.html
   My bibliography  Save this article

Asymptotic properties of the maximum-likelihood estimator in zero-inflated binomial regression

Author

Listed:
  • Alpha Oumar Diallo
  • Aliou Diop
  • Jean-François Dupuy

Abstract

The zero-inflated binomial (ZIB) regression model was proposed to account for excess zeros in binomial regression. Since then, the model has been applied in various fields, such as ecology and epidemiology. In these applications, maximum-likelihood estimation (MLE) is used to derive parameter estimates. However, theoretical properties of the MLE in ZIB regression have not yet been rigorously established. The current paper fills this gap and thus provides a rigorous basis for applying the model. Consistency and asymptotic normality of the MLE in ZIB regression are proved. A consistent estimator of the asymptotic variance–covariance matrix of the MLE is also provided. Finite-sample behavior of the estimator is assessed via simulations. Finally, an analysis of a data set in the field of health economics illustrates the paper.

Suggested Citation

  • Alpha Oumar Diallo & Aliou Diop & Jean-François Dupuy, 2017. "Asymptotic properties of the maximum-likelihood estimator in zero-inflated binomial regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(20), pages 9930-9948, October.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:20:p:9930-9948
    DOI: 10.1080/03610926.2016.1222437
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2016.1222437
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2016.1222437?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Buu-Chau Truong & Nguyen Van Thuan & Nguyen Huu Hau & Michael McAleer, 2019. "Applications of the Newton-Raphson Method in Decision Sciences and Education," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(4), pages 52-80, December.
    2. Kim-Hung Pho & Thi Diem-Chinh Ho & Tuan-Kiet Tran & Wing-Keung Wong, 2019. "Moment Generating Function, Expectation And Variance Of Ubiquitous Distributions With Applications In Decision Sciences: A Review," Advances in Decision Sciences, Asia University, Taiwan, vol. 23(2), pages 65-150, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:20:p:9930-9948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.