IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i14p7063-7084.html
   My bibliography  Save this article

Dividend barrier and ruin problems for a risk model with delayed claims

Author

Listed:
  • Jie-hua Xie
  • Wei Zou

Abstract

In this paper, a compound Poisson risk model in the presence of a constant dividend barrier is considered. Two types of individual claims, main claims and by-claims, are defined, where every by-claim is induced by the main claim and and the time of delay for the claim is assumed to be random. A system of integro-differential equations with certain boundary conditions for the expected discounted penalty function is derived. We show that its solution can be expressed as the solution to the expected discounted penalty function in the same risk model with the absence of a barrier plus a linear combination of two linearly independent solutions to the associated homogeneous integro-differential equation. Using systems of integro-differential equations for the moment-generating function as well as for the arbitrary moments of the sum of discounted dividend payments until ruin, a matrix version of the dividends–penalty type relationship is derived. We also prove that ruin is certain under constant dividend barrier strategy. The closed form expressions are given when the claim amounts from both classes are exponentially distributed. Finally, a numerical example is presented to illustrate the solution procedure.

Suggested Citation

  • Jie-hua Xie & Wei Zou, 2017. "Dividend barrier and ruin problems for a risk model with delayed claims," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(14), pages 7063-7084, July.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:14:p:7063-7084
    DOI: 10.1080/03610926.2016.1143010
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2016.1143010
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2016.1143010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dhiti Osatakul & Shuanming Li & Xueyuan Wu, 2024. "Bonus-malus Systems vs Delays in Claims Reporting and Settlement: Analysis of Ruin Probabilities," Papers 2408.00003, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:14:p:7063-7084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.