IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i13p6463-6477.html
   My bibliography  Save this article

Heteroskedasticity–robust tests with minimum size distortion

Author

Listed:
  • Patrick Richard

Abstract

Asymptotically valid inference in linear regression models is easily achieved under mild conditions using the well-known Eicker–White heteroskedasticity–robust covariance matrix estimator or one of its variant. In finite sample however, such inferences can suffer from substantial size distortion. Indeed, it is well established in the literature that the finite sample accuracy of a test may depend on which variant of the Eicker–White estimator is used, on the underlying data generating process (DGP) and on the desired level of the test.This paper develops a new variant of the Eicker–White estimator which explicitly aims to minimize the finite sample null error in rejection probability (ERP) of the test. This is made possible by selecting the transformation of the squared residuals which results in the smallest possible ERP through a numerical algorithm based on the wild bootstrap. Monte Carlo evidence indicates that this new procedure achieves a level of robustness to the DGP, sample size and nominal testing level unequaled by any other Eicker–White estimator based asymptotic test.

Suggested Citation

  • Patrick Richard, 2017. "Heteroskedasticity–robust tests with minimum size distortion," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(13), pages 6463-6477, July.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:13:p:6463-6477
    DOI: 10.1080/03610926.2015.1125497
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2015.1125497
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2015.1125497?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:13:p:6463-6477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.