IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v46y2017i11p5292-5310.html
   My bibliography  Save this article

An FFT approach for option pricing under a regime-switching stochastic interest rate model

Author

Listed:
  • Kun Fan
  • Yang Shen
  • Tak Kuen Siu
  • Rongming Wang

Abstract

In this article, we investigate the pricing of European-style options under a Markovian regime-switching Hull–White interest rate model. The parameters of this model, including the mean-reversion level, the volatility of the stochastic interest rate, and the volatility of an asset’s value, are modulated by an observable, continuous-time, finite-state Markov chain. A closed-form expression for the characteristic function of the logarithmic terminal asset price is derived. Then, using the fast Fourier transform, a price of a European-style option is computed. In a two-state Markov chain case, numerical examples and empirical studies are presented to illustrate the practical implementation of the model.

Suggested Citation

  • Kun Fan & Yang Shen & Tak Kuen Siu & Rongming Wang, 2017. "An FFT approach for option pricing under a regime-switching stochastic interest rate model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(11), pages 5292-5310, June.
  • Handle: RePEc:taf:lstaxx:v:46:y:2017:i:11:p:5292-5310
    DOI: 10.1080/03610926.2015.1100740
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2015.1100740
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2015.1100740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong-Mei Zhu & Jiejun Lu & Wai-Ki Ching & Tak-Kuen Siu, 2019. "Option Pricing Under a Stochastic Interest Rate and Volatility Model with Hidden Markovian Regime-Switching," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 555-586, February.
    2. Xie, Yurong & Deng, Guohe, 2022. "Vulnerable European option pricing in a Markov regime-switching Heston model with stochastic interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    3. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:46:y:2017:i:11:p:5292-5310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.