Author
Listed:
- Sam Weerahandi
- Jinadasa Gamage
Abstract
This article presents a general method of inference of the parameters of a continuous distribution with two unknown parameters. Except in a few distributions such as the normal distribution, the classical approach fails in this context to provide accurate inferences with small samples.Therefore, by taking the generalized approach to inference (cf. Weerahandi, 1995), in this article we present a general method of inference to tackle practically useful two-parameter distributions such as the gamma distribution as well as distributions of theoretical interest such as the two-parameter uniform distribution. The proposed methods are exact in the sense that they are based on exact probability statements and exact expected values. The advantage of taking the generalized approach over the classical approximate inferences is shown via simulation studies.This article has the potential to motivate much needed further research in non normal regressions, multiparameter problems, and multivariate problems for which basically there are only large sample inferences available. The approach that we take should pave the way for researchers to solve a variety of non normal problems, including ANOVA and MANOVA problems, where even the Bayesian approach fails. In the context of testing of hypotheses, the proposed method provides a superior alternative to the classical generalized likelihood ratio method.
Suggested Citation
Sam Weerahandi & Jinadasa Gamage, 2016.
"A general method of inference for two-parameter continuous distributions,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(9), pages 2612-2625, May.
Handle:
RePEc:taf:lstaxx:v:45:y:2016:i:9:p:2612-2625
DOI: 10.1080/03610926.2014.887109
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:9:p:2612-2625. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.