IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i8p2392-2401.html
   My bibliography  Save this article

On maximum variance of kth records

Author

Listed:
  • Krzysztof Jasiński

Abstract

We consider i.i.d. samples of size n with continuous parent distributions and finite variances. Klimczak and Rychlik (2004) provided sharp bounds for the variances of kth record values in population variance units. The bounds are expressed in terms of the maximum of an analytic function over interval (0, 1). We prove that there exists a point x = x(k, n) such that the function strictly increases in (0, x) and strictly decreases in (x, 1). Consequently the maximum point is unique and it is the zero of the function derivative. We solve this problem for 2≤k≤max{2,n2+4n3n+4}$2\le k\le \max \lbrace 2,\frac{n^{2}+4n}{3n+4}\rbrace$ and n ⩾ 1 applying the variation diminishing property of the power functions.

Suggested Citation

  • Krzysztof Jasiński, 2016. "On maximum variance of kth records," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(8), pages 2392-2401, April.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:8:p:2392-2401
    DOI: 10.1080/03610926.2013.879895
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.879895
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.879895?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:8:p:2392-2401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.