IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i5p1199-1214.html
   My bibliography  Save this article

Inverse probability weighted estimators for single-index models with missing covariates

Author

Listed:
  • Tingting Li
  • Hu Yang

Abstract

In this article, we consider the inverse probability weighted estimators for a single-index model with missing covariates when the selection probabilities are known or unknown. It is shown that the estimator for the index parameter by using estimated selection probabilities has a smaller asymptotic variance than that with true selection probabilities, thus is more efficient. Therefore, the important Horvitz-Thompson property is verified for the index parameter in single index model. However, this difference disappears for the estimators of the link function. Some numerical examples and a real data application are also conducted to illustrate the performances of the estimators.

Suggested Citation

  • Tingting Li & Hu Yang, 2016. "Inverse probability weighted estimators for single-index models with missing covariates," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1199-1214, March.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:5:p:1199-1214
    DOI: 10.1080/03610926.2012.705208
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.705208
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.705208?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huilan Liu & Hu Yang & Changgen Peng, 2019. "Weighted composite quantile regression for single index model with missing covariates at random," Computational Statistics, Springer, vol. 34(4), pages 1711-1740, December.
    2. Takuma Yoshida, 2019. "Two stage smoothing in additive models with missing covariates," Statistical Papers, Springer, vol. 60(6), pages 1803-1826, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:5:p:1199-1214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.