Author
Listed:
- S. Arumairajan
- P. Wijekoon
Abstract
In this paper, we propose three generalized estimators, namely, generalized unrestricted estimator (GURE), generalized stochastic restricted estimator (GSRE), and generalized preliminary test stochastic restricted estimator (GPTSRE). The GURE can be used to represent the ridge estimator, almost unbiased ridge estimator (AURE), Liu estimator, and almost unbiased Liu estimator. When stochastic restrictions are available in addition to the sample information, the GSRE can be used to represent stochastic mixed ridge estimator, stochastic restricted Liu estimator, stochastic restricted almost unbiased ridge estimator, and stochastic restricted almost unbiased Liu estimator. The GPTSRE can be used to represent the preliminary test estimators based on mixed estimator. Using the GPTSRE, the properties of three other preliminary test estimators, namely preliminary test stochastic mixed ridge estimator, preliminary test stochastic restricted almost unbiased Liu estimator, and preliminary test stochastic restricted almost unbiased ridge estimator can also be discussed. The mean square error matrix criterion is used to obtain the superiority conditions to compare the estimators based on GPTSRE with some biased estimators for the two cases for which the stochastic restrictions are correct, and are not correct. Finally, a numerical example and a Monte Carlo simulation study are done to illustrate the theoretical findings of the proposed estimators.
Suggested Citation
S. Arumairajan & P. Wijekoon, 2016.
"Generalized preliminary test stochastic restricted estimator in the linear regression model,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(20), pages 6061-6086, October.
Handle:
RePEc:taf:lstaxx:v:45:y:2016:i:20:p:6061-6086
DOI: 10.1080/03610926.2014.957850
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:20:p:6061-6086. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.