IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i19p5660-5678.html
   My bibliography  Save this article

Estimation in a bivariate integer-valued autoregressive process

Author

Listed:
  • Aleksandar S. Nastić
  • Miroslav M. Ristić
  • Predrag M. Popović

Abstract

A bivariate integer-valued autoregressive time series model is presented. The model structure is based on binomial thinning. The unconditional and conditional first and second moments are considered. Correlation structure of marginal processes is shown to be analogous to the ARMA(2, 1) model. Some estimation methods such as the Yule–Walker and conditional least squares are considered and the asymptotic distributions of the obtained estimators are derived. Comparison between bivariate model with binomial thinning and bivariate model with negative binomial thinning is given.

Suggested Citation

  • Aleksandar S. Nastić & Miroslav M. Ristić & Predrag M. Popović, 2016. "Estimation in a bivariate integer-valued autoregressive process," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(19), pages 5660-5678, October.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:19:p:5660-5678
    DOI: 10.1080/03610926.2014.948203
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.948203
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.948203?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zezhun Chen & Angelos Dassios & George Tzougas, 2023. "Multivariate mixed Poisson Generalized Inverse Gaussian INAR(1) regression," Computational Statistics, Springer, vol. 38(2), pages 955-977, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:19:p:5660-5678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.