IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i12p3489-3509.html
   My bibliography  Save this article

Asymptotic results in gamma kernel regression

Author

Listed:
  • Jianhong Shi
  • Weixing Song

Abstract

Based on the Gamma kernel density estimation procedure, this article constructs a nonparametric kernel estimate for the regression functions when the covariate are nonnegative. Asymptotic normality and uniform almost sure convergence results for the new estimator are systematically studied, and the finite performance of the proposed estimate is discussed via a simulation study and a comparison study with an existing method. Finally, the proposed estimation procedure is applied to the Geyser data set.

Suggested Citation

  • Jianhong Shi & Weixing Song, 2016. "Asymptotic results in gamma kernel regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(12), pages 3489-3509, June.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:12:p:3489-3509
    DOI: 10.1080/03610926.2014.890225
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2014.890225
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2014.890225?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juxia Xiao & Xu Li & Jianhong Shi, 2019. "Local linear smoothers using inverse Gaussian regression," Statistical Papers, Springer, vol. 60(4), pages 1225-1253, August.
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Xu Li & Juxia Xiao & Weixing Song & Jianhong Shi, 2019. "Local linear regression with reciprocal inverse Gaussian kernel," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 82(6), pages 733-758, August.
    4. Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2022. "Uniform convergence rates for nonparametric estimators smoothed by the beta kernel," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1353-1382, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:12:p:3489-3509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.