IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v45y2016i12p3458-3463.html
   My bibliography  Save this article

A very simple proof of the multivariate Chebyshev's inequality

Author

Listed:
  • Jorge Navarro

Abstract

In this short note, a very simple proof of the Chebyshev's inequality for random vectors is given. This inequality provides a lower bound for the percentage of the population of an arbitrary random vector X with finite mean μ = E(X) and a positive definite covariance matrix V = Cov(X) whose Mahalanobis distance with respect to V to the mean μ is less than a fixed value. The main advantage of the proof is that it is a simple exercise for a first year probability course. An alternative proof based on principal components is also provided. This proof can be used to study the case of a singular covariance matrix V.

Suggested Citation

  • Jorge Navarro, 2016. "A very simple proof of the multivariate Chebyshev's inequality," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(12), pages 3458-3463, June.
  • Handle: RePEc:taf:lstaxx:v:45:y:2016:i:12:p:3458-3463
    DOI: 10.1080/03610926.2013.873135
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.873135
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.873135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Budny Katarzyna, 2019. "Power Generalization Of Chebyshev’S Inequality – Multivariate Case," Statistics in Transition New Series, Polish Statistical Association, vol. 20(3), pages 155-170, September.
    2. Budny, Katarzyna, 2022. "Improved probability inequalities for Mardia’s coefficient of kurtosis," Statistics & Probability Letters, Elsevier, vol. 191(C).
    3. Navarro Jorge, 2020. "Bivariate box plots based on quantile regression curves," Dependence Modeling, De Gruyter, vol. 8(1), pages 132-156, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:45:y:2016:i:12:p:3458-3463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.