IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i8p1552-1570.html
   My bibliography  Save this article

Nonparametric Mixtures Based on Skew-normal Distributions: An Application to Density Estimation

Author

Listed:
  • Caroline C. Vieira
  • Rosangela H. Loschi
  • Denise Duarte

Abstract

This article addresses the density estimation problem using nonparametric Bayesian approach. It is considered hierarchical mixture models where the uncertainty about the mixing measure is modeled using the Dirichlet process. The main goal is to build more flexible models for density estimation. Extensions of the normal mixture model via Dirichlet process previously introduced in the literature are twofold. First, Dirichlet mixtures of skew-normal distributions are considered, say, in the first stage of the hierarchical model, the normal distribution is replaced by the skew-normal one. We also assume a skew-normal distribution as the center measure in the Dirichlet mixture of normal distributions. Some important results related to Bayesian inference in the location-scale skew-normal family are introduced. In particular, we obtain the stochastic representations for the full conditional distributions of the location and skewness parameters. The algorithm introduced by MacEachern and Müller in 1998 is used to sample from the posterior distributions. The models are compared considering simulated data sets. Finally, the well-known Old Faithful Geyser data set is analyzed using the proposed models and the Dirichlet mixture of normal distributions. The model based on Dirichlet mixture of skew-normal distributions captured the data bimodality and skewness shown in the empirical distribution.

Suggested Citation

  • Caroline C. Vieira & Rosangela H. Loschi & Denise Duarte, 2015. "Nonparametric Mixtures Based on Skew-normal Distributions: An Application to Density Estimation," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(8), pages 1552-1570, April.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:8:p:1552-1570
    DOI: 10.1080/03610926.2013.771745
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.771745
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.771745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Rychlik, 2019. "Sharp bounds on distribution functions and expectations of mixtures of ordered families of distributions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 166-195, March.
    2. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:8:p:1552-1570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.