IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i5p972-982.html
   My bibliography  Save this article

A Universal Prior Distribution for Bayesian Consistency of Non parametric Procedures

Author

Listed:
  • Yang Xing

Abstract

The introduction of the Hausdorff α-entropy in Xing (2008a), Xing (2008b), Xing (2010), Xing (2011), and Xing and Ranneby (2009) has lead a series of improvements of well-known results on posterior consistency. In this paper we discuss an application of the Hausdorff α-entropy. We construct a universal prior distribution such that the corresponding posterior distribution is almost surely consistent. The approach of the construction of this type of prior distribution is natural, but it works very well for all separable models. We illustrate such prior distributions by examples. In particular, we obtain that if the true density function is known to be some normal probability density function with unknown mean and unknown variance then without any additional assumption one can construct a prior distribution which leads to posterior consistency.

Suggested Citation

  • Yang Xing, 2015. "A Universal Prior Distribution for Bayesian Consistency of Non parametric Procedures," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(5), pages 972-982, March.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:5:p:972-982
    DOI: 10.1080/03610926.2012.750361
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.750361
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.750361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:5:p:972-982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.