IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i5p1065-1079.html
   My bibliography  Save this article

Additive Transformation Models for Multivariate Interval-Censored Data

Author

Listed:
  • Pao-Sheng Shen

Abstract

Tong, et al. (2008) considered multivariate (clustered) interval-censored failure time data that occur when there exist several correlated survival times of interest and only interval-censored data are available for each survival time. Assuming that covariates affect the hazard rate linearly, they developed a marginal inference approach using the additive hazards model. In this article, based on the idea of Zeng and Cai (2010), we consider a general class of additive transformation model, which relaxes the linear assumption. Using working independence likelihood, we present an inference approach for regression analysis of multivariate interval-censored data. A simulation study is conducted to investigate the performance of the proposed estimator. We apply the proposed method to the data set from the Diabetic Retinopathy Study.

Suggested Citation

  • Pao-Sheng Shen, 2015. "Additive Transformation Models for Multivariate Interval-Censored Data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(5), pages 1065-1079, March.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:5:p:1065-1079
    DOI: 10.1080/03610926.2012.762398
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.762398
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.762398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gamage, Prabhashi W. Withana & McMahan, Christopher S. & Wang, Lianming & Tu, Wanzhu, 2018. "A Gamma-frailty proportional hazards model for bivariate interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 354-366.
    2. Mengzhu Yu & Mingyue Du, 2022. "Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring," Mathematics, MDPI, vol. 10(18), pages 1-17, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:5:p:1065-1079. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.