IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i4p798-809.html
   My bibliography  Save this article

Residual Kriging for Functional Spatial Prediction of Salinity Curves

Author

Listed:
  • Adriana Reyes
  • Ramón Giraldo
  • Jorge Mateu

Abstract

Recently, several methodologies to perform geostatistical analysis of functional data have been proposed. All of them assume that the spatial functional process considered is stationary. However, in practice, we often have nonstationary functional data because there exists an explicit spatial trend in the mean. Here, we propose a methodology to extend kriging predictors for functional data to the case where the mean function is not constant through the region of interest. We consider an approach based on the classical residual kriging method used in univariate geostatistics. We propose a three steps procedure. Initially, a functional regression model is used to detrend the mean. Then we apply kriging methods for functional data to the regression residuals to predict a residual curve at a non-data location. Finally, the prediction curve is obtained as the sum of the trend and the residual prediction. We apply the methodology to salinity data corresponding to 21 salinity curves recorded at the Ciénaga Grande de Santa Marta estuary, located in the Caribbean coast of Colombia. A cross-validation analysis was carried out to track the performance of the proposed methodology.

Suggested Citation

  • Adriana Reyes & Ramón Giraldo & Jorge Mateu, 2015. "Residual Kriging for Functional Spatial Prediction of Salinity Curves," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(4), pages 798-809, February.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:4:p:798-809
    DOI: 10.1080/03610926.2012.753087
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.753087
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.753087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael Meléndez & Ramón Giraldo & Víctor Leiva, 2020. "Sign, Wilcoxon and Mann-Whitney Tests for Functional Data: An Approach Based on Random Projections," Mathematics, MDPI, vol. 9(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:4:p:798-809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.