IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i22p4826-4847.html
   My bibliography  Save this article

Adaptive Order Determination for Constructing Time Series Forecasting Models

Author

Listed:
  • Yongli Zhang
  • Sergio Koreisha

Abstract

In time series modeling consistent criteria like Bayesian Information Criterion (BIC) outperform in terms of predictability loss-efficient criteria like Akaike Information Criterion (AIC) when data are generated by a finite-order autoregressive process, and the reverse is true when data are generated by an infinite-order autoregressive process. Since in practice we don’t know the data-generating process, it is useful to have an adaptive criterion that behaves as either a consistent or just as a loss-efficient criterion, whichever performs better. Here we derive such a criterion. Moreover, our criterion is adaptive to effective sample sizes and not sensitive to maximum a priori determined order limits.

Suggested Citation

  • Yongli Zhang & Sergio Koreisha, 2015. "Adaptive Order Determination for Constructing Time Series Forecasting Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(22), pages 4826-4847, November.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:22:p:4826-4847
    DOI: 10.1080/03610926.2013.800881
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.800881
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.800881?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kley, Tobias & Preuss, Philip & Fryzlewicz, Piotr, 2019. "Predictive, finite-sample model choice for time series under stationarity and non-stationarity," LSE Research Online Documents on Economics 101748, London School of Economics and Political Science, LSE Library.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:22:p:4826-4847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.