Author
Listed:
- Rachid Boumaza
- Smail Yousfi
- Sabine Demotes-Mainard
Abstract
Functional principal component analysis (FPCA) as a reduction data technique of a finite number T of functions can be used to identify the dominant modes of variation of numeric three-way data.We carry out the FPCA on multidimensional probability density functions, relate this method to other standard methods and define its centered or standardized versions. Grounded on the relationship between FPCA of densities, FPCA of their corresponding characteristic functions, PCA of the MacLaurin expansions of these characteristic functions and dual STATIS method applied to their variance matrices, we propose a method for interpreting the results of the FPCA of densities. This method is based on the investigations of the relationships between the scores of the FPCA and the moments associated to the densities.The method is illustrated using known Gaussian densities. In practice, FPCA of densities deals with observations of multidimensional variables on T occasions. These observations can be used to estimate the T associated densities (i) by estimating the parameters of these densities, assuming that they are Gaussian, or (ii) by using the Gaussian kernel method and choosing the matrix bandwidth by the normal reference rule. Thereafter, FPCA estimate is derived from these estimates and the interpretation method is carried out to explore the dominant modes of variation of the types of three-way data encountered in sensory analysis and archaeology.
Suggested Citation
Rachid Boumaza & Smail Yousfi & Sabine Demotes-Mainard, 2015.
"Interpreting the Principal Component Analysis of Multivariate Density Functions,"
Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(16), pages 3321-3339, August.
Handle:
RePEc:taf:lstaxx:v:44:y:2015:i:16:p:3321-3339
DOI: 10.1080/03610926.2013.824103
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:16:p:3321-3339. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.