IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v44y2015i10p2037-2058.html
   My bibliography  Save this article

The Poisson Generalized Linear Failure Rate Model

Author

Listed:
  • Gauss M. Cordeiro
  • Edwin Ortega
  • Artur Lemonte

Abstract

We formulate a new cure rate survival model by assuming that the number of competing causes of the event of interest has the Poisson distribution, and the time to this event has the generalized linear failure rate distribution. A new distribution to analyze lifetime data is defined from the proposed cure rate model, and its quantile function as well as a general expansion for the moments is derived. We estimate the parameters of the model with cure rate in the presence of covariates for censored observations using maximum likelihood and derive the observed information matrix. We obtain the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and present some ways to perform global influence analysis. The usefulness of the proposed cure rate survival model is illustrated in an application to real data.

Suggested Citation

  • Gauss M. Cordeiro & Edwin Ortega & Artur Lemonte, 2015. "The Poisson Generalized Linear Failure Rate Model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 44(10), pages 2037-2058, May.
  • Handle: RePEc:taf:lstaxx:v:44:y:2015:i:10:p:2037-2058
    DOI: 10.1080/03610926.2013.771749
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2013.771749
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2013.771749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sandeep Kumar Maurya & Saralees Nadarajah, 2021. "Poisson Generated Family of Distributions: A Review," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 484-540, November.
    2. Rasool Roozegar & Saralees Nadarajah & Eisa Mahmoudi, 2022. "The Power Series Exponential Power Series Distributions with Applications to Failure Data Sets," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 44-78, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:44:y:2015:i:10:p:2037-2058. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.