IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v43y2014i22p4679-4706.html
   My bibliography  Save this article

Two-Term Edgeworth Expansions for the Classes of U- and V-statistics

Author

Listed:
  • Fadlalla G. Elfadaly
  • Sanaa M. El Gayar

Abstract

Much effort has been devoted to deriving Edgeworth expansions for various classes of statistics that are asymptotically normally distributed, with derivations tailored to the individual structure of each class. Expansions with smaller error rates are needed for more accurate statistical inference. Two such Edgeworth expansions are derived analytically in this paper. One is a two-term expansion for the standardized U-statistic of order m, m ⩾ 3, with an error rate o(n− 1). The other is an expansion with the same error rate for the distribution of the standardized V-statistic of the same order. In deriving the Edgeworth expansion, we made use of the close connection between the V- and U-statistics, which permits to first derive the needed expansion for the related U-statistic, then extend it to the V-statistic, taking into consideration the estimation of all difference terms between the two statistics.

Suggested Citation

  • Fadlalla G. Elfadaly & Sanaa M. El Gayar, 2014. "Two-Term Edgeworth Expansions for the Classes of U- and V-statistics," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 43(22), pages 4679-4706, November.
  • Handle: RePEc:taf:lstaxx:v:43:y:2014:i:22:p:4679-4706
    DOI: 10.1080/03610926.2012.736583
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610926.2012.736583
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610926.2012.736583?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:43:y:2014:i:22:p:4679-4706. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.