IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v38y2009i16-17p3099-3113.html
   My bibliography  Save this article

Estimation and Classification of BOLD Responses Over Multiple Trials

Author

Listed:
  • Kush Kapur
  • Anindya Roy
  • Dulal K. Bhaumik
  • Robert D. Gibbons
  • Nicole A. Lazar
  • John A. Sweeney
  • Subhash Aryal
  • Dave Patterson

Abstract

In this article, we model functional magnetic resonance imaging (fMRI) data for event-related experiment data using a fourth degree spline to fit voxel specific blood oxygenation level-dependent (BOLD) responses. The data are preprocessed for removing long term temporal components such as drifts using wavelet approximations. The spatial dependence is incorporated in the data by the application of 3D Gaussian spatial filter. The methodology assigns an activation score to each trial based on the voxel specific characteristics of the response curve. The proposed procedure has a capability of being fully automated and it produces activation images based on overall scores assigned to each voxel. The methodology is illustrated on real data from an event-related design experiment of visually guided saccades (VGS).

Suggested Citation

  • Kush Kapur & Anindya Roy & Dulal K. Bhaumik & Robert D. Gibbons & Nicole A. Lazar & John A. Sweeney & Subhash Aryal & Dave Patterson, 2009. "Estimation and Classification of BOLD Responses Over Multiple Trials," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 38(16-17), pages 3099-3113, October.
  • Handle: RePEc:taf:lstaxx:v:38:y:2009:i:16-17:p:3099-3113
    DOI: 10.1080/03610920902947576
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610920902947576
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610920902947576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:38:y:2009:i:16-17:p:3099-3113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.