IDEAS home Printed from https://ideas.repec.org/a/taf/lstaxx/v29y2000i7p1419-1433.html
   My bibliography  Save this article

A generalization of the compound rayleigh distribution: using a bayesian method on cancer survival times

Author

Listed:
  • A. Bekker
  • J.J.J. Roux
  • P.J. Mosteit

Abstract

In this paper the generalized compound Rayleigh model, exhibiting flexible hazard rate, is high¬lighted. This makes it attractive for modelling survival times of patients showing characteristics of a random hazard rate. The Bayes estimators are derived for the parameters of this model and some survival time parameters from a right censored sample. This is done with respect to conjugate and discrete priors on the parameters of this model, under the squared error loss function, Varian's asymmetric linear-exponential (linex) loss function and a weighted linex loss function. The future survival time of a patient is estimated under these loss functions. A Monte Carlo simu¬lation procedure is used where closed form expressions of the estimators cannot be obtained. An example illustrates the proposed estimators for this model.

Suggested Citation

  • A. Bekker & J.J.J. Roux & P.J. Mosteit, 2000. "A generalization of the compound rayleigh distribution: using a bayesian method on cancer survival times," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 29(7), pages 1419-1433, January.
  • Handle: RePEc:taf:lstaxx:v:29:y:2000:i:7:p:1419-1433
    DOI: 10.1080/03610920008832554
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03610920008832554
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03610920008832554?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdullah Fathi & Al-Wageh A. Farghal & Ahmed A. Soliman, 2022. "Bayesian and Non-Bayesian Inference for Weibull Inverted Exponential Model under Progressive First-Failure Censoring Data," Mathematics, MDPI, vol. 10(10), pages 1-19, May.
    2. Gayan Warahena-Liyanage & Broderick Oluyede & Thatayaone Moakofi & Whatmore Sengweni, 2023. "The New Exponentiated Half Logistic-Harris-G Family of Distributions with Actuarial Measures and Applications," Stats, MDPI, vol. 6(3), pages 1-29, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:lstaxx:v:29:y:2000:i:7:p:1419-1433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/lsta .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.