IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v41y2023i2p593-607.html
   My bibliography  Save this article

Composite Likelihood Estimation of an Autoregressive Panel Ordered Probit Model with Random Effects

Author

Listed:
  • Kerem Tuzcuoglu

Abstract

Modeling and estimating autocorrelated discrete data can be challenging. In this article, we use an autoregressive panel ordered probit model where the serial correlation in the discrete variable is driven by the autocorrelation in the latent variable. In such a nonlinear model, the presence of a lagged latent variable results in an intractable likelihood containing high-dimensional integrals. To tackle this problem, we use composite likelihoods that involve a much lower order of integration. However, parameter identification might potentially become problematic since the information employed in lower dimensional distributions may not be rich enough for identification. Therefore, we characterize types of composite likelihoods that are valid for this model and study conditions under which the parameters can be identified. Moreover, we provide consistency and asymptotic normality results for two different composite likelihood estimators and conduct Monte Carlo studies to assess their finite-sample performances. Finally, we apply our method to analyze corporate bond ratings. Supplementary materials for this article are available online.

Suggested Citation

  • Kerem Tuzcuoglu, 2023. "Composite Likelihood Estimation of an Autoregressive Panel Ordered Probit Model with Random Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 593-607, April.
  • Handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:593-607
    DOI: 10.1080/07350015.2022.2044829
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2022.2044829
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2022.2044829?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:593-607. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.