IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v41y2023i2p440-452.html
   My bibliography  Save this article

Predicting the Global Minimum Variance Portfolio

Author

Listed:
  • Laura Reh
  • Fabian Krüger
  • Roman Liesenfeld

Abstract

We propose a novel dynamic approach to forecast the weights of the global minimum variance portfolio (GMVP) for the conditional covariance matrix of asset returns. The GMVP weights are the population coefficients of a linear regression of a benchmark return on a vector of return differences. This representation enables us to derive a consistent loss function from which we can infer the GMVP weights without imposing any distributional assumptions on the returns. In order to capture time variation in the returns’ conditional covariance structure, we model the portfolio weights through a recursive least squares (RLS) scheme as well as by generalized autoregressive score (GAS) type dynamics. Sparse parameterizations and targeting toward the weights of the equally weighted portfolio ensure scalability with respect to the number of assets. We apply these models to daily stock returns, and find that they perform well compared to existing static and dynamic approaches in terms of both the expected loss and unconditional portfolio variance.

Suggested Citation

  • Laura Reh & Fabian Krüger & Roman Liesenfeld, 2023. "Predicting the Global Minimum Variance Portfolio," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(2), pages 440-452, April.
  • Handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:440-452
    DOI: 10.1080/07350015.2022.2035226
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2022.2035226
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2022.2035226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timo Dimitriadis & Yannick Hoga, 2023. "Regressions under Adverse Conditions," Papers 2311.13327, arXiv.org, revised Jul 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2023:i:2:p:440-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.