IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v41y2022i1p170-183.html
   My bibliography  Save this article

Time Series Approach to the Evolution of Networks: Prediction and Estimation

Author

Listed:
  • Anna Bykhovskaya

Abstract

The article analyzes nonnegative multivariate time series which we interpret as weighted networks. We introduce a model where each coordinate of the time series represents a given edge across time. The number of time periods is treated as large compared to the size of the network. The model specifies the temporal evolution of a weighted network that combines classical autoregression with nonnegativity, a positive probability of vanishing, and peer effect interactions between weights assigned to edges in the process. The main results provide criteria for stationarity versus explosiveness of the network evolution process and techniques for estimation of the parameters of the model and for prediction of its future values. Natural applications arise in networks of fixed number of agents, such as countries, large corporations, or small social communities. The article provides an empirical implementation of the approach to monthly trade data in European Union. Overall, the results confirm that incorporating nonnegativity of dependent variables into the model matters and incorporating peer effects leads to the improved prediction power.

Suggested Citation

  • Anna Bykhovskaya, 2022. "Time Series Approach to the Evolution of Networks: Prediction and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(1), pages 170-183, December.
  • Handle: RePEc:taf:jnlbes:v:41:y:2022:i:1:p:170-183
    DOI: 10.1080/07350015.2021.2006669
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2021.2006669
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2021.2006669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christis Katsouris, 2023. "Limit Theory under Network Dependence and Nonstationarity," Papers 2308.01418, arXiv.org, revised Aug 2023.
    2. Christis Katsouris, 2024. "Robust Estimation in Network Vector Autoregression with Nonstationary Regressors," Papers 2401.04050, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:41:y:2022:i:1:p:170-183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.