Author
Listed:
- Shouxia Wang
- Tao Huang
- Jinhong You
- Ming-Yen Cheng
Abstract
Motivated by two examples concerning global warming and monthly total import and export by China, we study time series that contain a nonparametric periodic component with an unknown period, a nonparametric trending behavior and also additive covariate effects. Further, as the amplitude function may change at some known or unknown change-point(s), we extend our model to take this dynamical periodicity into account and introduce two change-point estimators. To the best of knowledge, this is the first work to study such complex periodic structure. A two-step estimation procedure is proposed to estimate accurately the periodicity, trend and covariate effects. First, we estimate the period with the trend and covariate effects being approximated by B-splines rather than being ignored. To achieve robustness we employ a penalized M-estimation method which uses post model selection inference ideas. Next, given the period estimate, we estimate the amplitude, trend and covariate effects. Asymptotic properties of our estimators are derived, including consistency of the period estimator and asymptotic normality and oracle property of the estimated periodic sequence, trend and covariate effects. Simulation studies confirm superiority of our method and illustrate good performance of our change-point estimators. Applications to the two motivating examples demonstrate utilities of our methods.
Suggested Citation
Shouxia Wang & Tao Huang & Jinhong You & Ming-Yen Cheng, 2022.
"Robust Inference for Nonstationary Time Series with Possibly Multiple Changing Periodic Structures,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1718-1731, October.
Handle:
RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1718-1731
DOI: 10.1080/07350015.2021.1970574
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1718-1731. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.