IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i4p1523-1537.html
   My bibliography  Save this article

Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency

Author

Listed:
  • Haozhe Zhang
  • Yehua Li

Abstract

We consider spatially dependent functional data collected under a geostatistics setting, where locations are sampled from a spatial point process. The functional response is the sum of a spatially dependent functional effect and a spatially independent functional nugget effect. Observations on each function are made on discrete time points and contaminated with measurement errors. Under the assumption of spatial stationarity and isotropy, we propose a tensor product spline estimator for the spatio-temporal covariance function. When a coregionalization covariance structure is further assumed, we propose a new functional principal component analysis method that borrows information from neighboring functions. The proposed method also generates nonparametric estimators for the spatial covariance functions, which can be used for functional kriging. Under a unified framework for sparse and dense functional data, infill and increasing domain asymptotic paradigms, we develop the asymptotic convergence rates for the proposed estimators. Advantages of the proposed approach are demonstrated through simulation studies and two real data applications representing sparse and dense functional data, respectively.

Suggested Citation

  • Haozhe Zhang & Yehua Li, 2022. "Unified Principal Component Analysis for Sparse and Dense Functional Data under Spatial Dependency," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1523-1537, October.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1523-1537
    DOI: 10.1080/07350015.2021.1938085
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2021.1938085
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2021.1938085?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Leheng & Hu, Qirui, 2024. "Simultaneous inference and uniform test for eigensystems of functional data," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1523-1537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.