IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i4p1442-1454.html
   My bibliography  Save this article

Hedging With Linear Regressions and Neural Networks

Author

Listed:
  • Johannes Ruf
  • Weiguan Wang

Abstract

We study neural networks as nonparametric estimation tools for the hedging of options. To this end, we design a network, named HedgeNet, that directly outputs a hedging strategy. This network is trained to minimize the hedging error instead of the pricing error. Applied to end-of-day and tick prices of S&P 500 and Euro Stoxx 50 options, the network is able to reduce the mean squared hedging error of the Black-Scholes benchmark significantly. However, a similar benefit arises by simple linear regressions that incorporate the leverage effect.

Suggested Citation

  • Johannes Ruf & Weiguan Wang, 2022. "Hedging With Linear Regressions and Neural Networks," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1442-1454, October.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1442-1454
    DOI: 10.1080/07350015.2021.1931241
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2021.1931241
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2021.1931241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Kun & Yang, Xuewei & Zhu, Peng, 2023. "Delta hedging and volatility-price elasticity: A two-step approach," Journal of Banking & Finance, Elsevier, vol. 153(C).
    2. Chunhui Qiao & Xiangwei Wan, 2024. "Enhancing Black-Scholes Delta Hedging via Deep Learning," Papers 2407.19367, arXiv.org, revised Aug 2024.
    3. Roberto Daluiso & Marco Pinciroli & Michele Trapletti & Edoardo Vittori, 2023. "CVA Hedging by Risk-Averse Stochastic-Horizon Reinforcement Learning," Papers 2312.14044, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:4:p:1442-1454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.