IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i3p1123-1139.html
   My bibliography  Save this article

Estimation and Inference for Multi-Kink Quantile Regression

Author

Listed:
  • Wei Zhong
  • Chuang Wan
  • Wenyang Zhang

Abstract

This article proposes a new Multi-Kink Quantile Regression (MKQR) model which assumes different linear quantile regression forms in different regions of the domain of the threshold covariate but are still continuous at kink points. First, we investigate parameter estimation, kink points detection and statistical inference in MKQR models. We propose an iterative segmented quantile regression algorithm for estimating both the regression coefficients and the locations of kink points. The proposed algorithm is much more computationally efficient than the grid search algorithm and not sensitive to the selection of initial values. Second, asymptotic properties, such as selection consistency of the number of kink points and asymptotic normality of the estimators of both regression coefficients and kink effects, are established to justify the proposed method theoretically. Third, a score test based on partial subgradients is developed to verify whether the kink effects exist or not. Test-inversion confidence intervals for kink location parameters are also constructed. Monte Carlo simulations and two real data applications on the secondary industrial structure of China and the triceps skinfold thickness of Gambian females illustrate the excellent finite sample performances of the proposed MKQR model. A new R package MultiKink is developed to easily implement the proposed methods.

Suggested Citation

  • Wei Zhong & Chuang Wan & Wenyang Zhang, 2022. "Estimation and Inference for Multi-Kink Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1123-1139, June.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:3:p:1123-1139
    DOI: 10.1080/07350015.2021.1901720
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2021.1901720
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2021.1901720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Yan & Wan, Chuang & Zhang, Wenyang & Zhong, Wei, 2024. "A Multi-Kink quantile regression model with common structure for panel data analysis," Journal of Econometrics, Elsevier, vol. 239(2).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:3:p:1123-1139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.