IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i2p690-704.html
   My bibliography  Save this article

Modeling Multivariate Time Series With Copula-Linked Univariate D-Vines

Author

Listed:
  • Zifeng Zhao
  • Peng Shi
  • Zhengjun Zhang

Abstract

This article proposes a novel multivariate time series model named copula-linked univariate D-vines (CuDvine), which enables the simultaneous copula-based modeling of both temporal and cross-sectional dependence for multivariate time series. To construct CuDvine, we first build a semiparametric univariate D-vine time series model (uDvine) based on a D-vine. The uDvine generalizes the existing first-order copula-based Markov chain models to Markov chains of an arbitrary-order. Building upon uDvine, we construct CuDvine by linking multiple uDvines via a parametric copula. As a simple and tractable model, CuDvine provides flexible models for marginal behavior and temporal dependence of time series, and can also incorporate sophisticated cross-sectional dependence such as time-varying and spatio-temporal dependence for high-dimensional applications. Robust and computationally efficient procedures, including a sequential model selection method and a two-stage MLE, are proposed for model estimation and inference, and their statistical properties are investigated. Numerical experiments are conducted to demonstrate the flexibility of CuDvine, and to examine the performance of the sequential model selection procedure and the two-stage MLE. Real data applications on the Australian electricity price data demonstrate the superior performance of CuDvine to traditional multivariate time series models.

Suggested Citation

  • Zifeng Zhao & Peng Shi & Zhengjun Zhang, 2022. "Modeling Multivariate Time Series With Copula-Linked Univariate D-Vines," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 690-704, April.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:2:p:690-704
    DOI: 10.1080/07350015.2020.1859381
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2020.1859381
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2020.1859381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Yifan & Guo, Ju’e & Li, Yi & Zhou, Jiandong, 2024. "Forecasting day-ahead electricity prices with spatial dependence," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1255-1270.
    2. Lars Arne Jordanger & Dag Tjøstheim, 2023. "Local Gaussian Cross-Spectrum Analysis," Econometrics, MDPI, vol. 11(2), pages 1-27, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:2:p:690-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.