IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i2p537-546.html
   My bibliography  Save this article

Nonparametric Copula Estimation for Mixed Insurance Claim Data

Author

Listed:
  • Lu Yang

Abstract

Multivariate claim data are common in insurance applications, for example, claims of each policyholder from different types of insurance coverages. Understanding the dependencies among such multivariate risks is critical to the solvency and profitability of insurers. Effectively modeling insurance claim data is challenging due to their special complexities. At the policyholder level, claim outcomes usually follow a two-part mixed distribution: a probability mass at zero corresponding to no claim and an otherwise positive claim from a skewed and long-tailed distribution. To simultaneously accommodate the complex features of the marginal distributions while flexibly quantifying the dependencies among multivariate claims, copula models are commonly used. Although a substantial body of literature focusing on copulas with continuous outcomes has emerged, some key steps do not carry over to mixed data. In particular, existing nonparametric copula estimators are not consistent for mixed data, and thus copula specification and diagnostics for mixed outcomes have been a problem. However, insurance is a closely regulated industry in which model validation is particularly important, and it is essential to develop a baseline nonparametric copula estimator to identify the underlying dependence structure. In this article, we fill in this gap by developing a nonparametric copula estimator for mixed data. We show the uniform convergence of the proposed nonparametric copula estimator. Through simulation studies, we demonstrate that the proportion of zeros plays a key role in the finite sample performance of the proposed estimator. Using the claim data from the Wisconsin Local Government Property Insurance Fund, we illustrate that our nonparametric copula estimator can assist analysts in identifying important features of the underlying dependence structure, revealing how different claims or risks are related to one another.

Suggested Citation

  • Lu Yang, 2022. "Nonparametric Copula Estimation for Mixed Insurance Claim Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 537-546, April.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:2:p:537-546
    DOI: 10.1080/07350015.2020.1835668
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2020.1835668
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2020.1835668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Verschuren, Robert Matthijs, 2022. "Frequency-severity experience rating based on latent Markovian risk profiles," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 379-392.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:2:p:537-546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.