IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i1p370-381.html
   My bibliography  Save this article

Prediction in Locally Stationary Time Series

Author

Listed:
  • Holger Dette
  • Weichi Wu

Abstract

We develop an estimator for the high-dimensional covariance matrix of a locally stationary process with a smoothly varying trend and use this statistic to derive consistent predictors in nonstationary time series. In contrast to the currently available methods for this problem the predictor developed here does not rely on fitting an autoregressive model and does not require a vanishing trend. The finite sample properties of the new methodology are illustrated by means of a simulation study and a financial indices study. Supplementary materials for this article are available online.

Suggested Citation

  • Holger Dette & Weichi Wu, 2022. "Prediction in Locally Stationary Time Series," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 370-381, January.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:370-381
    DOI: 10.1080/07350015.2020.1819296
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2020.1819296
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2020.1819296?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jozef Barunik & Lukas Vacha, 2023. "The Dynamic Persistence of Economic Shocks," Papers 2306.01511, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:370-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.