IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v40y2022i1p240-255.html
   My bibliography  Save this article

Counterfactual Treatment Effects: Estimation and Inference

Author

Listed:
  • Yu-Chin Hsu
  • Tsung-Chih Lai
  • Robert P. Lieli

Abstract

This article proposes statistical methods to evaluate the quantile counterfactual treatment effect (QCTE) if one were to change the composition of the population targeted by a status quo program. QCTE enables a researcher to carry out an ex-ante assessment of the distributional impact of certain policy interventions or to investigate the possible explanations for treatment effect heterogeneity. Assuming unconfoundedness and invariance of the conditional distributions of the potential outcomes, QCTE is identified and can be nonparametrically estimated by a kernel-based method. Viewed as a random function over the continuum of quantile indices, the estimator converges weakly to a zero mean Gaussian process at the parametric rate. We propose a multiplier bootstrap procedure to construct uniform confidence bands, and provide similar results for average effects and for the counterfactually treated subpopulation. We also present Monte Carlo simulations and two counterfactual exercises that provide insight into the heterogeneous earnings effects of the Job Corps training program in the United States.

Suggested Citation

  • Yu-Chin Hsu & Tsung-Chih Lai & Robert P. Lieli, 2022. "Counterfactual Treatment Effects: Estimation and Inference," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 240-255, January.
  • Handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:240-255
    DOI: 10.1080/07350015.2020.1800479
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2020.1800479
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2020.1800479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsung-Chih Lai & Jiun-Hua Su, 2023. "Counterfactual Copula and Its Application to the Effects of College Education on Intergenerational Mobility," Papers 2303.06658, arXiv.org.
    2. Arthur Charpentier & Emmanuel Flachaire & Ewen Gallic, 2023. "Optimal Transport for Counterfactual Estimation: A Method for Causal Inference," Papers 2301.07755, arXiv.org.
    3. Christis Katsouris, 2023. "Structural Analysis of Vector Autoregressive Models," Papers 2312.06402, arXiv.org, revised Feb 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:40:y:2022:i:1:p:240-255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.