IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v39y2021i4p953-971.html
   My bibliography  Save this article

Threshold Regression With a Threshold Boundary

Author

Listed:
  • Ping Yu
  • Xiaodong Fan

Abstract

This article studies computation, estimation, inference, and testing for linearity in threshold regression with a threshold boundary. We first put forward a new algorithm to ease the computation of the threshold boundary, and develop the asymptotics for the least squares estimator in both the fixed-threshold-effect framework and the small-threshold-effect framework. We also show that the inverting-likelihood-ratio method is not suitable to construct confidence sets for the threshold parameters, while the nonparametric posterior interval is still applicable. We then propose a new score-type test to test for the existence of threshold effects. Comparing with the usual Wald-type test, it is computationally less intensive, and its critical values are easier to obtain by the simulation method. Simulation studies corroborate the theoretical results. We finally conduct two empirical applications in labor economics to illustrate the nonconstancy of thresholds.

Suggested Citation

  • Ping Yu & Xiaodong Fan, 2021. "Threshold Regression With a Threshold Boundary," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(4), pages 953-971, October.
  • Handle: RePEc:taf:jnlbes:v:39:y:2021:i:4:p:953-971
    DOI: 10.1080/07350015.2020.1740712
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2020.1740712
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2020.1740712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lixiong Yang, 2023. "Variable selection in threshold model with a covariate-dependent threshold," Empirical Economics, Springer, vol. 65(1), pages 189-202, July.
    2. Ping Yu & Shengjie Hong & Peter C. B. Phillips, 2022. "Panel Threshold Regression with Unobserved Individual-Specific Threshold Effects," Cowles Foundation Discussion Papers 2352, Cowles Foundation for Research in Economics, Yale University.
    3. Lee, Yoonseok & Wang, Yulong, 2023. "Threshold regression with nonparametric sample splitting," Journal of Econometrics, Elsevier, vol. 235(2), pages 816-842.
    4. Christis Katsouris, 2023. "Optimal Estimation Methodologies for Panel Data Regression Models," Papers 2311.03471, arXiv.org, revised Nov 2023.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:39:y:2021:i:4:p:953-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.