IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v38y2020i4p784-795.html
   My bibliography  Save this article

A Smooth Nonparametric, Multivariate, Mixed-Data Location-Scale Test

Author

Listed:
  • Jeffrey S. Racine
  • Ingrid Van Keilegom

Abstract

A number of tests have been proposed for assessing the location-scale assumption that is often invoked by practitioners. Existing approaches include Kolmogorov–Smirnov and Cramer–von Mises statistics that each involve measures of divergence between unknown joint distribution functions and products of marginal distributions. In practice, the unknown distribution functions embedded in these statistics are typically approximated using nonsmooth empirical distribution functions (EDFs). In a recent article, Li, Li, and Racine establish the benefits of smoothing the EDF for inference, though their theoretical results are limited to the case where the covariates are observed and the distributions unobserved, while in the current setting some covariates and their distributions are unobserved (i.e., the test relies on population error terms from a location-scale model) which necessarily involves a separate theoretical approach. We demonstrate how replacing the nonsmooth distributions of unobservables with their kernel-smoothed sample counterparts can lead to substantial power improvements, and extend existing approaches to the smooth multivariate and mixed continuous and discrete data setting in the presence of unobservables. Theoretical underpinnings are provided, Monte Carlo simulations are undertaken to assess finite-sample performance, and illustrative applications are provided.

Suggested Citation

  • Jeffrey S. Racine & Ingrid Van Keilegom, 2020. "A Smooth Nonparametric, Multivariate, Mixed-Data Location-Scale Test," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 784-795, October.
  • Handle: RePEc:taf:jnlbes:v:38:y:2020:i:4:p:784-795
    DOI: 10.1080/07350015.2019.1574227
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2019.1574227
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2019.1574227?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hušková, Marie & Meintanis, Simos G. & Pretorius, Charl, 2020. "Tests for validity of the semiparametric heteroskedastic transformation model," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:38:y:2020:i:4:p:784-795. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.