IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v38y2020i3p621-632.html
   My bibliography  Save this article

Empirical likelihood for high frequency data

Author

Listed:
  • Lorenzo Camponovo
  • Yukitoshi Matsushita
  • Taisuke Otsu

Abstract

This paper introduces empirical likelihood methods for interval estimation and hypothesis testing on volatility measures in some high frequency data environments. We propose a modified empirical likelihood statistic that is asymptotically pivotal under infill asymptotics, where the number of high frequency observations in a fixed time interval increases to infinity. The proposed statistic is extended to be robust to the presence of jumps and microstructure noise. We also provide an empirical likelihood-based test to detect the presence of jumps. Furthermore, we study higher-order properties of a general family of nonparametric likelihood statistics and show that a particular statistic admits a Bartlett correction: a higher-order refinement to achieve better coverage or size properties. Simulation and a real data example illustrate the usefulness of our approach.

Suggested Citation

  • Lorenzo Camponovo & Yukitoshi Matsushita & Taisuke Otsu, 2020. "Empirical likelihood for high frequency data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 621-632, July.
  • Handle: RePEc:taf:jnlbes:v:38:y:2020:i:3:p:621-632
    DOI: 10.1080/07350015.2018.1549051
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2018.1549051
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2018.1549051?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Xiao-Li & Liu, Jian-Min & Xiong, Xiong & Zhang, Wei, 2022. "Research on stock volatility risk and investor sentiment contagion from the perspective of multi-layer dynamic network," International Review of Financial Analysis, Elsevier, vol. 84(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:38:y:2020:i:3:p:621-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.