IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i4p696-709.html
   My bibliography  Save this article

A New Approach to Volatility Modeling: The Factorial Hidden Markov Volatility Model

Author

Listed:
  • Maciej Augustyniak
  • Luc Bauwens
  • Arnaud Dufays

Abstract

A new process—the factorial hidden Markov volatility (FHMV) model—is proposed to model financial returns or realized variances. Its dynamics are driven by a latent volatility process specified as a product of three components: a Markov chain controlling volatility persistence, an independent discrete process capable of generating jumps in the volatility, and a predictable (data-driven) process capturing the leverage effect. An economic interpretation is attached to each one of these components. Moreover, the Markov chain and jump components allow volatility to switch abruptly between thousands of states, and the transition matrix of the model is structured to generate a high degree of volatility persistence. An empirical study on six financial time series shows that the FHMV process compares favorably to state-of-the-art volatility models in terms of in-sample fit and out-of-sample forecasting performance over time horizons ranging from 1 to 100 days. Supplementary materials for this article are available online.

Suggested Citation

  • Maciej Augustyniak & Luc Bauwens & Arnaud Dufays, 2019. "A New Approach to Volatility Modeling: The Factorial Hidden Markov Volatility Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(4), pages 696-709, October.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:4:p:696-709
    DOI: 10.1080/07350015.2017.1415910
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2017.1415910
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2017.1415910?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    2. Xu Cheng & Eric Renault & Paul Sangrey, 2024. "Identifying the Volatility Risk Price Through the Leverage Effect," PIER Working Paper Archive 24-013, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    3. Bjoern Schulte-Tillman & Mawuli Segnon & Bernd Wilfling, 2022. "Financial-market volatility prediction with multiplicative Markov-switching MIDAS components," CQE Working Papers 9922, Center for Quantitative Economics (CQE), University of Muenster.
    4. Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Dynamics of variance risk premia: A new model for disentangling the price of risk," Journal of Econometrics, Elsevier, vol. 217(2), pages 312-334.
    5. Zhang, Xiaoyuan & Zhang, Tianqi, 2023. "On pricing double-barrier options with Markov regime switching," Finance Research Letters, Elsevier, vol. 51(C).
    6. Augustyniak, Maciej & Dufays, Arnaud, 2018. "Modeling macroeconomic series with regime-switching models characterized by a high-dimensional state space," Economics Letters, Elsevier, vol. 170(C), pages 122-126.
    7. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:4:p:696-709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.