IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i3p506-516.html
   My bibliography  Save this article

Multiple Regression Model Averaging and the Focused Information Criterion With an Application to Portfolio Choice

Author

Listed:
  • Filip Klimenka
  • James Lewis Wolter

Abstract

We consider multiple regression (MR) model averaging using the focused information criterion (FIC). Our approach is motivated by the problem of implementing a mean-variance portfolio choice rule. The usual approach is to estimate parameters ignoring the intention to use them in portfolio choice. We develop an estimation method that focuses on the trading rule of interest. Asymptotic distributions of submodel estimators in the MR case are derived using a localization framework. The localization is of both regression coefficients and error covariances. Distributions of submodel estimators are used for model selection with the FIC. This allows comparison of submodels using the risk of portfolio rule estimators. FIC model averaging estimators are then characterized. This extension further improves risk properties. We show in simulations that applying these methods in the portfolio choice case results in improved estimates compared with several competitors. An application to futures data shows superior performance as well.

Suggested Citation

  • Filip Klimenka & James Lewis Wolter, 2019. "Multiple Regression Model Averaging and the Focused Information Criterion With an Application to Portfolio Choice," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 506-516, July.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:3:p:506-516
    DOI: 10.1080/07350015.2017.1383262
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2017.1383262
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2017.1383262?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Jun & Wan, Alan T.K. & He, Shuyuan & Zou, Guohua, 2022. "Optimal model averaging for multivariate regression models," Journal of Multivariate Analysis, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:3:p:506-516. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.