IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i2p301-311.html
   My bibliography  Save this article

Statistical Inference for a Relative Risk Measure

Author

Listed:
  • Yi He
  • Yanxi Hou
  • Liang Peng
  • Jiliang Sheng

Abstract

For monitoring systemic risk from regulators’ point of view, this article proposes a relative risk measure, which is sensitive to the market comovement. The asymptotic normality of a nonparametric estimator and its smoothed version is established when the observations are independent. To effectively construct an interval without complicated asymptotic variance estimation, a jackknife empirical likelihood inference procedure based on the smoothed nonparametric estimation is provided with a Wilks type of result in case of independent observations. When data follow from AR-GARCH models, the relative risk measure with respect to the errors becomes useful and so we propose a corresponding nonparametric estimator. A simulation study and real-life data analysis show that the proposed relative risk measure is useful in monitoring systemic risk.

Suggested Citation

  • Yi He & Yanxi Hou & Liang Peng & Jiliang Sheng, 2019. "Statistical Inference for a Relative Risk Measure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 301-311, April.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:2:p:301-311
    DOI: 10.1080/07350015.2017.1321549
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2017.1321549
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2017.1321549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Hongfang & Chen, Yu & Hu, Taizhong, 2022. "Statistical inference for tail-based cumulative residual entropy," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 66-95.
    2. Kliem, Lea & Sagebiel, Julian, 2023. "Consumers' preferences for commons-based and open-source produce: A discrete choice experiment with directional information manipulations," Food Policy, Elsevier, vol. 119(C).
    3. Shiqing Ling & Ke Zhu, 2022. "Self-Weighted LSE and Residual-Based QMLE of ARMA-GARCH Models," JRFM, MDPI, vol. 15(2), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:2:p:301-311. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.