IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v37y2019i1p13-26.html
   My bibliography  Save this article

System Estimation of Panel Data Models Under Long-Range Dependence

Author

Listed:
  • Yunus Emre Ergemen

Abstract

A general dynamic panel data model is considered that incorporates individual and interactive fixed effects allowing for contemporaneous correlation in model innovations. The model accommodates general stationary or nonstationary long-range dependence through interactive fixed effects and innovations, removing the necessity to perform a priori unit-root or stationarity testing. Moreover, persistence in innovations and interactive fixed effects allows for cointegration; innovations can also have vector-autoregressive dynamics; deterministic trends can be featured. Estimations are performed using conditional-sum-of-squares criteria based on projected series by which latent characteristics are proxied. Resulting estimates are consistent and asymptotically normal at standard parametric rates. A simulation study provides reliability on the estimation method. The method is then applied to the long-run relationship between debt and GDP. Supplementary materials for this article are available online.

Suggested Citation

  • Yunus Emre Ergemen, 2019. "System Estimation of Panel Data Models Under Long-Range Dependence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 13-26, January.
  • Handle: RePEc:taf:jnlbes:v:37:y:2019:i:1:p:13-26
    DOI: 10.1080/07350015.2016.1255217
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2016.1255217
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2016.1255217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guglielmo Maria Caporale & Luis Alberiko Gil‐Alana, 2022. "Trends and cycles in macro series: The case of US real GDP," Bulletin of Economic Research, Wiley Blackwell, vol. 74(1), pages 123-134, January.
    2. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    3. Michail I. Seitaridis & Nikolaos S. Thomaidis & Pandelis N. Biskas, 2021. "Fundamental Responsiveness in European Electricity Prices," Energies, MDPI, vol. 14(22), pages 1-14, November.
    4. Daniel Borup & Bent Jesper Christensen & Yunus Emre Ergemen, 2019. "Assessing predictive accuracy in panel data models with long-range dependence," CREATES Research Papers 2019-04, Department of Economics and Business Economics, Aarhus University.
    5. Jorge V Pérez-Rodríguez & Heiko Rachinger & María Santana-Gallego, 2022. "Does tourism promote economic growth? A fractionally integrated heterogeneous panel data analysis," Tourism Economics, , vol. 28(5), pages 1355-1376, August.
    6. Thomaidis, Nikolaos S. & Biskas, Pandelis N., 2021. "Fundamental pricing laws and long memory effects in the day-ahead power market," Energy Economics, Elsevier, vol. 100(C).
    7. Tobias Hartl, 2020. "Macroeconomic Forecasting with Fractional Factor Models," Papers 2005.04897, arXiv.org.
    8. Juan L Eugenio-Martin & Roberto Patuelli, 2022. "Panel data models in tourism research: Innovative applications and methods," Tourism Economics, , vol. 28(5), pages 1348-1354, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:37:y:2019:i:1:p:13-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.