IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v36y2018i2p321-333.html
   My bibliography  Save this article

Measuring Nonlinear Granger Causality in Mean

Author

Listed:
  • Xiaojun Song
  • Abderrahim Taamouti

Abstract

We propose model-free measures for Granger causality in mean between random variables. Unlike the existing measures, ours are able to detect and quantify nonlinear causal effects. The new measures are based on nonparametric regressions and defined as logarithmic functions of restricted and unrestricted mean square forecast errors. They are easily and consistently estimated by replacing the unknown mean square forecast errors by their nonparametric kernel estimates. We derive the asymptotic normality of nonparametric estimator of causality measures, which we use to build tests for their statistical significance. We establish the validity of smoothed local bootstrap that one can use in finite sample settings to perform statistical tests. Monte Carlo simulations reveal that the proposed test has good finite sample size and power properties for a variety of data-generating processes and different sample sizes. Finally, the empirical importance of measuring nonlinear causality in mean is also illustrated. We quantify the degree of nonlinear predictability of equity risk premium using variance risk premium. Our empirical results show that the variance risk premium is a very good predictor of risk premium at horizons less than 6 months. We also find that there is a high degree of predictability at the 1-month horizon, that can be attributed to a nonlinear causal effect. Supplementary materials for this article are available online.

Suggested Citation

  • Xiaojun Song & Abderrahim Taamouti, 2018. "Measuring Nonlinear Granger Causality in Mean," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(2), pages 321-333, April.
  • Handle: RePEc:taf:jnlbes:v:36:y:2018:i:2:p:321-333
    DOI: 10.1080/07350015.2016.1166118
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2016.1166118
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2016.1166118?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    2. Jang, Hyuna & Kim, Jong-Min & Noh, Hohsuk, 2022. "Vine copula Granger causality in mean," Economic Modelling, Elsevier, vol. 109(C).
    3. Yoon, Seong-Min, 2022. "On the interdependence between biofuel, fossil fuel and agricultural food prices: Evidence from quantile tests," Renewable Energy, Elsevier, vol. 199(C), pages 536-545.
    4. Gomes, Pedro & Kurter, Zeynep O. & Morita, Rubens, 2022. "European Sovereign Bond and Stock Market Granger Causality Dynamics," The Warwick Economics Research Paper Series (TWERPS) 1405, University of Warwick, Department of Economics.
    5. Roberto Fuentes M. & Irene Crimaldi & Armando Rungi, 2024. "Non-linear dependence and Granger causality: A vine copula approach," Papers 2409.15070, arXiv.org.
    6. Calvo-Pardo, Hector & Mancini, Tullio & Olmo, Jose, 2021. "Granger causality detection in high-dimensional systems using feedforward neural networks," International Journal of Forecasting, Elsevier, vol. 37(2), pages 920-940.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:36:y:2018:i:2:p:321-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.