IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v36y2018i1p75-87.html
   My bibliography  Save this article

Stochastic Volatility Models Based on OU-Gamma Time Change: Theory and Estimation

Author

Listed:
  • Lancelot F. James
  • Gernot Müller
  • Zhiyuan Zhang

Abstract

We consider stochastic volatility models that are defined by an Ornstein–Uhlenbeck (OU)-Gamma time change. These models are most suitable for modeling financial time series and follow the general framework of the popular non-Gaussian OU models of Barndorff-Nielsen and Shephard. One current problem of these otherwise attractive nontrivial models is, in general, the unavailability of a tractable likelihood-based statistical analysis for the returns of financial assets, which requires the ability to sample from a nontrivial joint distribution. We show that an OU process driven by an infinite activity Gamma process, which is an OU-Gamma process, exhibits unique features, which allows one to explicitly describe and exactly sample from relevant joint distributions. This is a consequence of the OU structure and the calculus of Gamma and Dirichlet processes. We develop a particle marginal Metropolis–Hastings algorithm for this type of continuous-time stochastic volatility models and check its performance using simulated data. For illustration we finally fit the model to S&P500 index data.

Suggested Citation

  • Lancelot F. James & Gernot Müller & Zhiyuan Zhang, 2018. "Stochastic Volatility Models Based on OU-Gamma Time Change: Theory and Estimation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 75-87, January.
  • Handle: RePEc:taf:jnlbes:v:36:y:2018:i:1:p:75-87
    DOI: 10.1080/07350015.2015.1133427
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1133427
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2015.1133427?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Szczepocki Piotr, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Statistics Poland, vol. 21(2), pages 173-187, June.
    2. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:36:y:2018:i:1:p:75-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.