IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v34y2016i3p357-367.html
   My bibliography  Save this article

Maximum-Entropy Prior Uncertainty and Correlation of Statistical Economic Data

Author

Listed:
  • João D. F. Rodrigues

Abstract

Empirical estimates of source statistical economic data such as trade flows, greenhouse gas emissions, or employment figures are always subject to uncertainty (stemming from measurement errors or confidentiality) but information concerning that uncertainty is often missing. This article uses concepts from Bayesian inference and the maximum entropy principle to estimate the prior probability distribution, uncertainty, and correlations of source data when such information is not explicitly provided. In the absence of additional information, an isolated datum is described by a truncated Gaussian distribution, and if an uncertainty estimate is missing, its prior equals the best guess. When the sum of a set of disaggregate data is constrained to match an aggregate datum, it is possible to determine the prior correlations among disaggregate data. If aggregate uncertainty is missing, all prior correlations are positive. If aggregate uncertainty is available, prior correlations can be either all positive, all negative, or a mix of both. An empirical example is presented, which reports relative uncertainties and correlation priors for the County Business Patterns database. In this example, relative uncertainties range from 1% to 80% and 20% of data pairs exhibit correlations below −0.9 or above 0.9. Supplementary materials for this article are available online.

Suggested Citation

  • João D. F. Rodrigues, 2016. "Maximum-Entropy Prior Uncertainty and Correlation of Statistical Economic Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 357-367, July.
  • Handle: RePEc:taf:jnlbes:v:34:y:2016:i:3:p:357-367
    DOI: 10.1080/07350015.2015.1038545
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1038545
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2015.1038545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:34:y:2016:i:3:p:357-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.