IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v32y2014i1p88-111.html
   My bibliography  Save this article

Moment-Implied Densities: Properties and Applications

Author

Listed:
  • Eric Ghysels
  • Fangfang Wang

Abstract

Suppose one uses a parametric density function based on the first four (conditional) moments to model risk. There are quite a few densities to choose from and depending on which is selected, one implicitly assumes very different tail behavior and very different feasible skewness/kurtosis combinations. Surprisingly, there is no systematic analysis of the tradeoff one faces. It is the purpose of the article to address this. We focus on the tail behavior and the range of skewness and kurtosis as these are key for common applications such as risk management.

Suggested Citation

  • Eric Ghysels & Fangfang Wang, 2014. "Moment-Implied Densities: Properties and Applications," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 88-111, January.
  • Handle: RePEc:taf:jnlbes:v:32:y:2014:i:1:p:88-111
    DOI: 10.1080/07350015.2013.847842
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2013.847842
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2013.847842?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    2. Hong Li & Yang Lu, 2018. "A Bayesian non-parametric model for small population mortality," Post-Print hal-02419000, HAL.
    3. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    4. Søren Asmussen, 2022. "On the role of skewness and kurtosis in tempered stable (CGMY) Lévy models in finance," Finance and Stochastics, Springer, vol. 26(3), pages 383-416, July.
    5. Seo, Sung Won & Kim, Jun Sik, 2015. "The information content of option-implied information for volatility forecasting with investor sentiment," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 106-120.
    6. Papantonis Ioannis & Rompolis Leonidas S. & Tzavalis Elias & Agapitos Orestis, 2023. "Augmenting the Realized-GARCH: the role of signed-jumps, attenuation-biases and long-memory effects," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 27(2), pages 171-198, April.
    7. Li, Yifan & Nolte, Ingmar & Pham, Manh Cuong, 2024. "Parametric risk-neutral density estimation via finite lognormal-Weibull mixtures," Journal of Econometrics, Elsevier, vol. 241(2).
    8. Greg Orosi, 2017. "Information content of right option tails: Evidence from S&P 500 index options," Journal of Asset Management, Palgrave Macmillan, vol. 18(7), pages 516-526, December.
    9. Papantonis, Ioannis & Rompolis, Leonidas & Tzavalis, Elias, 2023. "Improving variance forecasts: The role of Realized Variance features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1221-1237.
    10. McGee, Richard J. & McGroarty, Frank, 2017. "The risk premium that never was: A fair value explanation of the volatility spread," European Journal of Operational Research, Elsevier, vol. 262(1), pages 370-380.
    11. Liyuan Jiang & Shuang Zhou & Keren Li & Fangfang Wang & Jie Yang, 2018. "A New Nonparametric Estimate of the Risk-Neutral Density with Applications to Variance Swaps," Papers 1808.05289, arXiv.org, revised Feb 2019.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:32:y:2014:i:1:p:88-111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.