IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v30y2011i3p381-390.html
   My bibliography  Save this article

Tests of Short Memory With Thick-Tailed Errors

Author

Listed:
  • Christine Amsler
  • Peter Schmidt

Abstract

In this article, we consider the robustness to fat tails of four stationarity tests. We also consider their sensitivity to the number of lags used in long-run variance estimation, and the power of the tests. Lo's modified rescaled range (MR/S) test is not very robust. Choi's Lagrange multiplier (LM) test has excellent robustness properties but is not generally as powerful as the Kwiatkowski--Phillips--Schmidt--Shin (KPSS) test. As an analytical framework for fat tails, we suggest local-to-finite variance asymptotics, based on a representation of the process as a weighted sum of a finite variance process and an infinite variance process, where the weights depend on the sample size and a constant. The sensitivity of the asymptotic distribution of a test to the weighting constant is a good indicator of its robustness to fat tails. This article has supplementary material online.

Suggested Citation

  • Christine Amsler & Peter Schmidt, 2011. "Tests of Short Memory With Thick-Tailed Errors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 381-390, November.
  • Handle: RePEc:taf:jnlbes:v:30:y:2011:i:3:p:381-390
    DOI: 10.1080/07350015.2012.669668
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2012.669668
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2012.669668?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:30:y:2011:i:3:p:381-390. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.