Author
Listed:
- Meng Li
- Zejian Liu
- Cheng-Han Yu
- Marina Vannucci
Abstract
There is a wide range of applications where the local extrema of a function are the key quantity of interest. However, there is surprisingly little work on methods to infer local extrema with uncertainty quantification in the presence of noise. By viewing the function as an infinite-dimensional nuisance parameter, a semiparametric formulation of this problem poses daunting challenges, both methodologically and theoretically, as (i) the number of local extrema may be unknown, and (ii) the induced shape constraints associated with local extrema are highly irregular. In this article, we build upon a derivative-constrained Gaussian process prior recently proposed by Yu et al. to derive what we call an encompassing approach that indexes possibly multiple local extrema by a single parameter. We provide closed-form characterization of the posterior distribution and study its large sample behavior under this unconventional encompassing regime. We show that the posterior measure converges to a mixture of Gaussians with the number of components matching the underlying truth, leading to posterior exploration that accounts for multi-modality. Point and interval estimates of local extrema with frequentist properties are also provided. The encompassing approach leads to a remarkably simple, fast semiparametric approach for inference on local extrema. We illustrate the method through simulations and a real data application to event-related potential analysis. Supplementary materials for this article are available online.
Suggested Citation
Meng Li & Zejian Liu & Cheng-Han Yu & Marina Vannucci, 2024.
"Semiparametric Bayesian Inference for Local Extrema of Functions in the Presence of Noise,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(548), pages 3127-3140, October.
Handle:
RePEc:taf:jnlasa:v:119:y:2024:i:548:p:3127-3140
DOI: 10.1080/01621459.2024.2308333
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:548:p:3127-3140. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.