Author
Listed:
- Eli Ben-Michael
- Kosuke Imai
- Zhichao Jiang
Abstract
Data-driven decision making plays an important role even in high stakes settings like medicine and public policy. Learning optimal policies from observed data requires a careful formulation of the utility function whose expected value is maximized across a population. Although researchers typically use utilities that depend on observed outcomes alone, in many settings the decision maker’s utility function is more properly characterized by the joint set of potential outcomes under all actions. For example, the Hippocratic principle to “do no harm” implies that the cost of causing death to a patient who would otherwise survive without treatment is greater than the cost of forgoing life-saving treatment. We consider optimal policy learning with asymmetric counterfactual utility functions of this form that consider the joint set of potential outcomes. We show that asymmetric counterfactual utilities lead to an unidentifiable expected utility function, and so we first partially identify it. Drawing on statistical decision theory, we then derive minimax decision rules by minimizing the maximum expected utility loss relative to different alternative policies. We show that one can learn minimax loss decision rules from observed data by solving intermediate classification problems, and establish that the finite sample excess expected utility loss of this procedure is bounded by the regret of these intermediate classifiers. We apply this conceptual framework and methodology to the decision about whether or not to use right heart catheterization for patients with possible pulmonary hypertension. Supplementary materials for this article are available online.
Suggested Citation
Eli Ben-Michael & Kosuke Imai & Zhichao Jiang, 2024.
"Policy Learning with Asymmetric Counterfactual Utilities,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(548), pages 3045-3058, October.
Handle:
RePEc:taf:jnlasa:v:119:y:2024:i:548:p:3045-3058
DOI: 10.1080/01621459.2023.2300507
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:548:p:3045-3058. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.