IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v119y2024i546p1657-1670.html
   My bibliography  Save this article

Independence Weights for Causal Inference with Continuous Treatments

Author

Listed:
  • Jared D. Huling
  • Noah Greifer
  • Guanhua Chen

Abstract

Studying causal effects of continuous treatments is important for gaining a deeper understanding of many interventions, policies, or medications, yet researchers are often left with observational studies for doing so. In the observational setting, confounding is a barrier to the estimation of causal effects. Weighting approaches seek to control for confounding by reweighting samples so that confounders are comparable across different treatment values. Yet, for continuous treatments, weighting methods are highly sensitive to model misspecification. In this article we elucidate the key property that makes weights effective in estimating causal quantities involving continuous treatments. We show that to eliminate confounding, weights should make treatment and confounders independent on the weighted scale. We develop a measure that characterizes the degree to which a set of weights induces such independence. Further, we propose a new model-free method for weight estimation by optimizing our measure. We study the theoretical properties of our measure and our weights, and prove that our weights can explicitly mitigate treatment-confounder dependence. The empirical effectiveness of our approach is demonstrated in a suite of challenging numerical experiments, where we find that our weights are quite robust and work well under a broad range of settings. Supplementary materials for this article are available online.

Suggested Citation

  • Jared D. Huling & Noah Greifer & Guanhua Chen, 2024. "Independence Weights for Causal Inference with Continuous Treatments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 119(546), pages 1657-1670, April.
  • Handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1657-1670
    DOI: 10.1080/01621459.2023.2213485
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2023.2213485
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2023.2213485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cerqua Augusto & Di Stefano Roberta & Mattera Raffaele, 2024. "The Clustered Dose-Response Function Estimator for continuous treatment with heterogeneous treatment effects," Papers 2409.08773, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:119:y:2024:i:546:p:1657-1670. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.